Sains Malaysiana 53(8)(2024): 1811-1818

http://doi.org/10.17576/jsm-2024-5308-07

 

Rawatan Plasma Nitrogen Suhu Bilik untuk Peningkatan Fungsi Penyembuhan Pembalut Luka

(Room Temperature Nitrogen Plasma Treatment for Advanced Wound Healing Functionality)

 

ANIN SOFYA MOHD AKHIRI1, LUQMAN HAKIMI ABDUL AZIZ1, AINUL HAFIZA ABD HAIR2, SARANI ZAKARIA1 & ROZIDAWATI AWANG1,*

 

1Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan

Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Centre of Foundation Studies, Universiti Teknologi MARA, Cawangan Selangor, Kampus Dengkil, 43600 Dengkil, Selangor, Malaysia

 

Received: 27 May 2024/Accepted: 26 June 2024

 

Abstrak

Pembalut luka kain kasa digunakan dalam pengurusan luka didapati tidak mampu mengekalkan persekitaran yang optimum untuk penyembuhan luka. Untuk mengatasi isu ini, rawatan plasma nitrogen tanpa terma telah dikenakan ke atas pembalut luka kain kasa menggunakan sistem pemendapan wap kimia secara peningkatan plasma berfrekuensi radio (RF-PECVD). Penyelidikan ini mengkaji kesan kuasa frekuensi radio (RF) yang berbeza (50, 60, 70, 80 dan 90 W) semasa rawatan plasma untuk mengenal pasti kuasa RF yang optimum dalam meningkatkan fungsi kain kasa sebagai pembalut luka yang ditentukan oleh sifat permukaan fabrik tersebut. Mikroskop elektron pengimbasan pancaran medan (FESEM) dan spektroskopi transformasi Fourier inframerah (FTIR) masing-masing telah digunakan untuk mengkaji morfologi dan ikatan kimia sampel tanpa rawatan dan sampel dengan rawatan plasma nitrogen. Imej daripada FESEM menunjukkan struktur gentian kain beralur dengan rekahan mikro pada semua permukaan sampel yang dirawat. Rekahan mikro yang paling ketara diperhatikan pada sampel yang dirawat dengan kuasa RF 50 W, 60 W dan 70 W. Spektrum FTIR menunjukkan terdapat peningkatan keamatan kumpulan berfungsi O-H dan C-O untuk sampel dengan rawatan plasma berbanding tanpa rawatan. Sampel yang dirawat dengan RF 70 W mempunyai kumpulan berfungsi C-N dan N-H dengan keamatan tertinggi. Kumpulan berfungsi tersebut berupaya menyumbang kepada peningkatan potensi kelekatan sel, kebolehbasahan dan biokeserasian fabrik. Kajian ini menunjukkan bahawa kesan kuasa RF semasa rawatan plasma nitrogen mampu mengubah suai sifat permukaan kain kasa seterusnya berpotensi meningkatkan fungsi fabrik tersebut sebagai pembalut luka.

 

Kata kunci: Kain kasa; kuasa RF; PECVD; penyahjerapan ion; punaran plasma

 

Abstract

Cotton gauze wound dressings used in wound management have been found incapable of maintaining an optimal environment for wound healing. To address this issue, non-thermal nitrogen plasma treatment was applied to gauze wound dressings using a radio frequency plasma enhanced chemical vapor deposition (RF-PECVD) system. This research investigates the effects of different radio frequency (RF) power levels (50, 60, 70, 80, and 90 W) during plasma treatment to identify the optimal RF power for enhancing the functionality of gauze as wound dressings, as determined by the fabric’s surface properties. Field emission scanning electron microscopy (FESEM) and Fourier transform infrared spectroscopy (FTIR) were used to study the morphology and chemical bonds of untreated and nitrogen plasma-treated samples, respectively. The FESEM images showed a grooved fiber structure with micro-cracks on all treated surfaces. The most pronounced micro-cracks were observed on samples treated with RF power levels of 50 W, 60 W, and 70 W. The FTIR spectra indicated an increase in the intensity of O-H and C-O functional groups in plasma-treated samples compared to untreated ones. Sample treated at 70 W RF power exhibited the highest intensity of C-N and N-H functional groups. These functional groups contribute to increased cell adhesion potential, wettability, and biocompatibility of the fabric. This study demonstrates that the effect of RF power during nitrogen plasma treatment can modify the surface properties of gauze, potentially increasing its function as wound dressing.

 

Keywords: Cotton gauze; ion desorption; PECVD; plasma etching; RF power

 

REFERENCES

Abd Aziz, S.A. & Awang, R. 2020. Chemical bonding composition and growth mechanism of a-CNx thin films by low-Temperature rf-PECVD technique. Sains Malaysiana 49(6): 177-184. doi:10.17576/jsm-2020-4906-24

Awang, R., Purhanudin, N. & Salman, N.S. 2018. Effect of radio frequency power on A-CN X film properties and its performance as humidity sensors. Sains Malaysiana 47(11): 2863-2867. doi:10.17576/jsm-2018-4711-29

Borda, L.J., Macquhae, F.E. & Kirsner, R.S. 2016. Wound dressings: A comprehensive review. Current Dermatology Reports 5(4): 287-297. doi:10.1007/s13671-016-0162-5

Cai, S., Wu, C., Yang, W., Liang, W., Yu, H. & Liu, L. 2020. Recent advance in surface modification for regulating cell adhesion and behaviors. Nanotechnology Reviews 9(1): 971-989. doi:10.1515/ntrev-2020-0076

de los Arcos, T., Awakowicz, P., Benedikt, J., Biskup, B., Böke, M., Boysen, N., Buschhaus, R., et al. 2023. PECVD and PEALD on polymer substrates (part I): Fundamentals and analysis of plasma activation and thin film growth. Plasma Processes and Polymers 21(2): 2300150. doi:10.1002/ppap.202300150

Dhivya, S., Padma, V.V. & Santhini, E. 2015. Wound dressings - A review. BioMedicine (Netherlands) 5(4): 24-28. doi:10.7603/s40681-015-0022-9

Eswaramoorthy, N. & McKenzie, D.R. 2017. Plasma treatments of dressings for wound healing: A review. Biophysical Reviews 9(6): 895-917. doi:10.1007/s12551-017-0327-x

Fazeli, M., Florez, J.P. & Simão, R.A. 2019. Improvement in adhesion of cellulose fibers to the thermoplastic starch matrix by plasma treatment modification. Composites Part B: Engineering 163: 207-216. doi:10.1016/j.compositesb.2018.11.048

Feng, C., Hu, Y., Jin, C., Zhuge, L., Wu, X. & Wang, W. 2020. The effect of atmospheric pressure glow discharge plasma treatment on the dyeing properties of silk fabric. Plasma Science and Technology 22(1): 015503. doi:10.1088/2058-6272/ab4c4e

He, H., Zhou, W., Gao, J., Wang, F., Wang, S., Fang, Y., Gao, Y., Chen, W., Zhang, W., Weng, Y., Wang, Z. & Liu, H. 2022. Efficient, biosafe and tissue adhesive hemostatic cotton gauze with controlled balance of hydrophilicity and hydrophobicity. Nature Communications 13: 552. doi:10.1038/s41467-022-28209-8

Hong, T., Yin, J.Y., Nie, S.P. & Xie, M.Y. 2021. Applications of infrared spectroscopy in polysaccharide structural analysis: Progress, challenge and perspective. Food Chemistry: X 12(November): 100168. doi:10.1016/j.fochx.2021.100168

Inbakumar, S., Morent, R., de Geyter, N., Desmet, T., Anukaliani, A., Dubruel, P. & Leys, C. 2010. Chemical and physical analysis of cotton fabrics plasma-treated with a low pressure DC glow discharge. Cellulose 17(2): 417-426. doi:10.1007/s10570-009-9369-y

Jelil, R.A. 2015. A review of low-temperature plasma treatment of textile materials. Journal of Materials Science 50: 5913-5943. doi:10.1007/s10853-015-9152-4

Jiang, X., Wu, L., Yang, K., Liu, T., Liao, W., Zhang, C., Zhang, L., Liu, Y. & Jiang, X. 2021. Kinetic etch front instability responsible for roughness formation in plasma etching. Applied Surface Science 543: 148862. doi:10.1016/j.apsusc.2020.148862

John, M.J. & Anandjiwala, R.D. 2009. Surface modification and preparation techniques for textile materials. In Surface Modification of Textiles, edited by Wei, Q. Woodhead Publishing. hlm. 1-25. doi:10.1533/9781845696689.1

Kordestani, S.S. 2019. Wound Care Management. Atlas of Wound Healing. Elsevier Inc. hlm. 31-47.

Kramar, A.D., Obradović, B.M., Vesel, A., Kuraica, M.M. & Kostić, M.M. 2018. Surface cleaning of raw cotton fibers with atmospheric pressure air plasma. Cellulose 25(7): 4199-4209. doi:10.1007/s10570-018-1820-5

Luna, S.M., Silva, S.S., Gomes, M.E., Mano, J.F. & Reis, R.L. 2011. Cell adhesion and proliferation onto chitosan-based membranes treated by plasma surface modification. Journal of Biomaterials Applications 26(1): 101-116. doi:10.1177/0885328210362924

Mather, R.R. 2009. Surface modification of textiles by plasma treatments. Surface Modification of Textiles. Woodhead Publishing Limited. doi:10.1533/9781845696689.296

Mowafi, S., Abou Taleb, M. & El-Sayed, H. 2022. A review of plasma-assisted treatments of textiles for eco-friendlier water-less processing. Egyptian Journal of Chemistry 65(5): 737-749. doi:10.21608/EJCHEM.2022.123590.5520

Naebe, M., Li, Q., Onur, A. & Denning, R. 2016. Investigation of chitosan adsorption onto cotton fabric with atmospheric helium/oxygen plasma pre-treatment. Cellulose 23(3): 2129-2142. doi:10.1007/s10570-016-0915-0

Pransilp, P., Pruettiphap, M., Bhanthumnavin, W., Paosawatyanyong, B. & Kiatkamjornwong, S. 2016. Surface modification of cotton fabrics by gas plasmas for color strength and adhesion by inkjet ink printing. Applied Surface Science 364: 208-220. doi:10.1016/j.apsusc.2015.12.102

Prysiazhnyi, V., Kramar, A., Dojcinovic, B., Zekic, A., Obradovic, B.M., Kuraica, M.M. & Kostic, M. 2013. Silver incorporation on viscose and cotton fibers after air, nitrogen and oxygen DBD plasma pretreatment. Cellulose 20(1): 315-325. doi:10.1007/s10570-012-9817-y

Rashidi, A., Shahidi, S., Ghoranneviss, M., Dalalsharifi, S. & Wiener, J. 2013. Effect of plasma on the zeta potential of cotton fabrics. Plasma Science and Technology 15(5): 455-458. doi:10.1088/1009-0630/15/5/12

Shahidi, S., Rashidi, A., Ghoranneviss, M., Anvari, A., Rahimi, M.K., Moghaddam, M.B. & Wiener, J. 2010. Investigation of metal absorption and antibacterial activity on cotton fabric modified by low temperature plasma. Cellulose 17(3): 627-634. doi:10.1007/s10570-010-9400-3

Siow, K.S., Abdul Rahman, A.S., Ng, P.Y. & Majlis, B.Y. 2020. Sulfur and nitrogen containing plasma polymers reduces bacterial attachment and growth. Materials Science and Engineering C 107: 110225. doi:10.1016/j.msec.2019.110225

Vajpayee, M., Singh, M. & Ledwani, L. 2021. Non-thermal plasma treatment of cellulosic biopolymer to enhance its surface property for various applications: A review. Materials Today: Proceedings 43: 3250–3255. doi:10.1016/j.matpr.2021.01.905

Yilma, B.B., Luebben, J.F. & Tadesse, M.G. 2021. Effect of plasma surface modification on comfort properties of polyester/cotton blend fabric. Materials Research 24(3). doi:10.1590/1980-5373-MR-2021-0021

Zanini, S., Grimoldi, E., Citterio, A. & Riccardi, C. 2015. Characterization of atmospheric pressure plasma treated pure cashmere and wool/cashmere textiles: Treatment in air/water vapor mixture. Applied Surface Science 349: 235–240. doi:10.1016/j.apsusc.2015.05.010

Zhou, C.E., Kan, C.W., Yuen, C.W.M., Lo, K.Y.C., Ho, C.P. & Lau, K.W.R. 2016. Regenerable antimicrobial finishing of cotton with nitrogen plasma treatment. BioResources 11(1): 1554-1570. doi:10.15376/biores.11.1.1554-1570

 

*Corresponding author; email: rozida@ukm.edu.my

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous next